
1

Electronics and Computer Science

Faculty of Physical Sciences and

Engineering

University of Southampton

Imran Bepari

30/04/2018

Technical demonstration exploring

movement methods in Virtual Reality

games

Project Supervisor: David Millard

Second Examiner: Gary Wills

A project report submitted for the award

of

MEng Computer Science

2

Abstract

When immersed in Virtual Reality (VR), the user is restricted to the physical

limits of their room, and since games are usually larger than the confines of a

small room area, different movement methods must be implemented to expand

the virtual world for the user. However, it is not agreed on what the standard

method for movement is. The aim of this project is to create a technical

demonstration which explores different movement methods in VR.

The project will entail the creation of a small basic game that will feature three

different movement types: teleportation, kinetic and vehicle-based, in an attempt

to find a solution to this problem. Through research, testing and the collection of

data, I will analyse the different levels of enjoyment that a user experiences with

each movement method, and how appropriate they are for the game they have

been created for.

3

Contents

1. Introduction .. 5

2. Background Reading .. 6

2.1. General Games Design .. 6

2.2. Virtual Reality ... 6

2.3. Motion/Cyber Sickness .. 7

2.3.1. Causes ... 7

2.3.2. Solutions .. 8

2.4. Examples of Movement in Virtual Reality .. 8

2.4.1. Smooth Movement ... 9

2.4.2. Teleport Movement ... 9

2.4.3. Other Movement – Kinetic .. 9

2.5. Hardware Limitations in Virtual Reality ... 10

3. Design .. 12

3.1. Game Design ... 12

3.2. Requirements ... 13

3.3. UML Diagram ... 13

4. Implementation ... 15

4.1. Movement Methods ... 15

4.1.1. Teleport Movement ... 15

4.1.2. Kinetic Movement ... 16

4.1.3. Vehicle-Based Movement .. 17

4.2. Enemy Artificial Intelligence .. 17

4.3. Gun and Projectile ... 18

4.4. Level Design .. 19

4.5. Tools .. 20

4.5.1. Game Engine – Unreal Engine 4 .. 20

4.5.2. Head Mounted Display – HTC Vive ... 21

4.6. Problems Encountered ... 21

5. Testing ... 23

5.1. White Box Testing ... 23

5.2. Black Box Testing ... 24

6. User Evaluation .. 27

6.1. User Evaluation Methodology ... 27

4

6.2. Results ... 28

6.3. Analysis and Evaluation .. 29

7. Project Management .. 31

7.1. Project Gantt Chart .. 31

7.2. Iterative Programming ... 32

7.3. Risk Analysis ... 33

8. Conclusion and Future Work .. 35

References ... 36

Appendix A – Game Design Document .. 38

Appendix B – UML Diagram in large .. 41

Appendix C – Gantt Charts in large ... 43

Appendix D – User Evaluation Full Results .. 45

Appendix E – Black Box Test 8 Figure in Large ... 49

Appendix F – Original Project Brief .. 50

5

1. Introduction

With recent release of Virtual Reality (VR) head mounted displays on a

consumer level, the gaming industry has still yet to properly grasp how a VR

game should be made on the scale of a AAA title, and how movement should

work in it. In this context, AAA title is referred to as a game developed by mid-

sized to large companies, with high development and marketing budgets, similar

to the term “blockbuster” in the film industry [1].

Movement is a difficult subject in VR because of its boundaries. A user is

restricted to the room they are in, so exploring a large level or world would

require additional movement systems to make the game playable.

Many games simply fit into the users play space, not move them around or use a

mechanic such as teleporting to move the player. While these solutions work for

some genres, such as short independent games, a solution has not been found for

large scale games with huge worlds, such as role-playing games and shooters.

For larger games, a teleport mechanic is an unsatisfactory solution, and doesn’t

work for the intended user experience. Multiplayer games are broken if a player

can teleport around since players need to be visible at all times to be able to be hit

by other players. Furthermore, teleporting can also be thematically unfitting for a

game, for example, if a game has a medieval theme, players should not be able to

move in a teleporting fashion.

In addition to this, motion sickness is the paramount problem when implementing

different movement mechanics in the virtual world, and implementing a method

that doesn’t call on this effect can be difficult. Motion sickness is the significant

reason that a true solution, for movement in VR, has been difficult to find, as

different users have different levels of tolerance to the VR world.

To address this, I will create a VR shooter game as an attempt to research

potential solutions to the problems I have mentioned. It will be a basic shooter

game that will be played in a head mounted display, the HTC Vive, and utilize

multiple different options for movement methods.

There will be 3 main movement mechanics:

a) Teleportation Movement

b) Kinetic Movement

c) Vehicle-Based Movement

Using user-based evaluation, I can obtain feedback for what the players think

about each of the movement methods. This data will measure users’ enjoyment

and how the game makes them feel, allowing me to evaluate the effectiveness of

each movement method for the game at hand.

6

2. Background Reading

This section covers the literature I have reviewed and the background research I

have done in preparation for this project.

2.1. General Games Design

To consider creating and explaining a solution to a problem in the design of video

games, the basics of video games design must be used as a foundation.

First and foremost, the basics of game design require a game to “advocate for the

player” [2]. It’s common for developers to add features to a game without

realising that they may do nothing for the player, or even make a game worse for

the player.

Game design is fundamentally difficult, as Schell, writer of “The Art of Game

Design”, lists multiple skills and requirements in the creation of a successful

game, including engineering, mathematics and management. Mainly, being able

to “dissect an experience” will be useful when developing in VR. He suggests

that being able to tell why something’s bad is a skill required for design, rather

than just being able to tell that something is bad [3].

Unlike typical software, users interact with games very differently. The concept

of Human-Computer Interaction (HCI) is a large focus in games design. If a

game “is not compelling and entertaining, the product fails in the marketplace”

[4]. It’s been shown that HCI and games design can learn a lot from each other

and are very similar studies. It can be assumed that when playing a game with the

VR medium, it must be properly designed to be enjoyable.

A difference between typical software and games is the difference in control

flow. Games will run code every “frame”, which is a snapshot of the games

current state, often at 60fps (frames per second) or even 90fps for VR. This

means that the code I create will have to be optimal for performance to be upheld,

since the engine will have to compute all the necessary processes in my game and

draw to the headset every frame. Performance is important for reasons mentioned

in Section 2.3.

In the writing of the Games Design document in this project (see Section 3.1), the

core games development values were learnt about to aid in making a satisfactory

solution.

2.2. Virtual Reality

Virtual Reality is the experience of another three-dimensional environment,

usually through a head mounted display. The content that can be played through

VR include images, videos and video games. VR offers these in a more

immersive format, allowing users to believe they are truly in a picture, video or

world by placing the users in them. Above all, interactivity included in VR is

unlike typical media or even some traditional video games, as the use of motion

controllers can allow for truly vivid and what feels to be “real” experiences [5].

7

This is achieved by giving each eye its own display with corrective lenses to

emulate the way humans see in the real world. The displays will render at a

slightly different angle to each other to achieve the 3D effect. Optionally, motion

controllers can also be included to give the user a way to interact with the virtual

world they are presented with.

As of the writing of this report, the hardware, consumer grade VR head mounted

displays come in two distinct categories: Standing and Room Scale. It’s

important to know what hardware to be developing for along with it’s

capabilities, along with what sets them apart.

The most common and cheapest form of VR is through Standing, with headsets

such as Google Cardboard costing as little as £11.55 [6], which utilizes the user’s

smartphone. Other Standing VR experiences include the Samsung Gear and the

original Oculus Rift Development Kit 1. These head mounted displays only track

the rotation of a user’s head, rather than the position and rotation. These pose less

interactivity than other head mounted displays, as only being able to turn the head

restricts the movement of the user.

Room Scale is far more expensive and less common in the consumer world,

simply because of the costs associated with acquiring one. Headsets in this

category such as the HTC Vive and Oculus Rift Consumer Release exceed £399

[7][8] in price, in addition to requiring a computer powerful enough to

accommodate it. These head mounted displays feature full positional and

rotational tracking for the user, over a room, allowing for a more immersive

experience.

As of now, most VR experiences running on Windows computers will interface

through SteamVR, supported by OpenVR. OpenVR is an open source

development kit that allows head mounted displays from any manufacturer to

interact with software such as Steam, or in this case a game engine [9].

2.3. Motion/Cyber Sickness

Motion sickness induced by VR, or cyber sickness, is a large phenomenon in

need of consideration when creating a game. It manifests as symptoms of

“discomfort, eye strain, nausea etc” [10]. This can be caused by movement not

caused by the user, similarly to a user getting motion sick in a moving vehicle.

The difference between cyber sickness and actual motion sickness is that it’s

caused by the “visual perception of self-motion”, rather than actual real motion

[10].

2.3.1. Causes

VR requires high end hardware to meet the requirements of the high frame rates

and resolution associated with it. Without meeting these requirements, VR

experiences can be sub-optimal and even induce cyber sickness.

8

When applied to the movement methods mentioned below, many players

experience this sickness when attempting to play VR games, especially large-

scale ones that require the use of these movement methods to progress.

Rolnick and Lubow suggested that the brain not feeling in control of movement

and being reactive in the perception of motion could be a cause of motion

sickness [11]. The act of only watching movement can cause motion sickness,

while proactively causing the motion rarely induces it.

The Field of View (FOV) has been observed to have an effect on whether a user

experiences sickness, where while a wider FOV immerses the user more, it

makes them more prone to sickness [12]. Most consumer head mounted displays,

including the HTC Vive, Samsung Gear VR and the Oculus Rift include a 110º

field of view [13].

2.3.2. Solutions

Suggested solutions for reducing sickness includes introducing a static frame of

reference [14], where by adding physical context to a player’s position, their

brain can handle the movement they aren’t experiencing. With light of this study,

one of my implementations will combine the Smooth movement method

(mentioned in Section 2.4.1), with a context addition to hopefully reduce how

sick players feel.

As per mentioned in Section 2.3.1, if feeling not in control, one is more likely to

feel motion sick. In order to give the player the most feeling of being in control, a

solution could be to proactively have the user do actions associated with their

movement, as mentioned by Rolnick and Lubow [11].

2.4. Examples of Movement in Virtual Reality

As the amount of literature on modern movement in VR is lacklustre, I turned to

games developers and examples of games themselves in researching different

types and implementations, along with their views and input for the topic.

VRemedyLabs talks about the approach of movement in VR, and how it can be

remedied. They believe there isn’t just a “single solution for locomotion in VR,

or for the nausea” and that solutions have to be fine-tuned to a game [15]. It was

indicated that there was a lack of immersive vast environments, with laments that

they “didn’t feel like a powerful hero immersed in a colossal world; I felt like a

bound prisoner trapped in a tiny cell.” [16] Kim Voll at Games Development

Conference spoke about how human brains are “designed to move us through the

world, not have the world move around us” [17], and how the hurdle of

movement in VR is a biological one too. This alludes that above all, more

trickery of the brain is required to create a good solution to movement in VR.

Steam is one of the biggest digital distribution platforms on the internet, and is

considered to have 75% of that market space, as of October 2013 [18], making

resourceful for analysing the success of video games. The Top Selling VR games

9

on Steam, as of 08/12/2017, were analysed for their methods for implementing

movement, if any.

Game Name Smooth

Movement

Teleport

Movement

Other

Raw Data ✓ ✓

Fallout 4 VR ✓ ✓

Doom VFR ✓

Onward ✓

Pavlov VR ✓

Rick and Morty: Virtual Rick-ality ✓

GORN ✓

Talos Principle VR ✓ ✓

Arizona Sunshine ✓ ✓

Table 1: List of Top Selling Games on Steam for 08/12/2017.

2.4.1. Smooth Movement

These games employ smooth movement, where pushing a button would project

the player in a direction, at a constant speed. It’s most comparable to

conventional game controls, since it acts like a control stick on a game controller.

These games have a bigger action focus, and mostly have gun mechanics

involved with them. As mentioned before, it can be predicted that this method is

used, despite the cyber sickness it causes some people, because of the players

fundamental need to be able to be hit by enemies. In addition to this, three of the

games in the table are also multiplayer shooter games.

2.4.2. Teleport Movement

The considered default method of movement in VR is teleportation, due to how

common it is in games. This movement involves a player selecting where they

want to move in the virtual world, by pointing to it, and the game will teleport

them there without any illusion of movement or motion. This is the safest way to

move a player about a game without inducing cyber sickness, and as a result,

many of the games in here appear to overlap with other categories, by using this

method as a backup option. Raw Data is a prime example of a VR game that uses

both smooth movement and teleportation, where each of them is optional and you

can use whichever you want, whenever.

2.4.3. Other Movement – Kinetic

This category contains outlier movement methods within the table. Some in the

selected list do movement significantly different to the other games. GORN uses

a method where players’ physical motion of their hands is translated into

movement in game. This can be compared to pulling on a rope, to pull yourself

forward. Talos Principle VR has a control where the game will allow you to

10

rotate yourself 90º on the spot, so the user doesn’t have to reorient themselves in

real life.

These analyses have influenced the design of my technical demonstration

significantly, as my game will try to emulate three of these movement methods

mentioned while making improvements to them.

2.5. Hardware Limitations in Virtual Reality

Hardware limitations are currently some of the most problematic limitations for

the development of Virtual Reality, especially in the field of video games.

Naturally, VR is expensive in terms of processing required, since the head

mounted display must render and display two slightly different images, at a

relatively high resolution and refresh rate. This section of background reading is

important for learning to build and program for the VR medium.

To create the 3D effect of Virtual Reality, the computer must generate two

images and different angles, equal to the distance between the user’s eyes. This

allows the users to perceive depth in the image when each image is being fed to

each eye. Rendering an entire scene twice is extremely taxing on hardware,

which is why games tend to have fewer objects in each scene.

Without a high resolution, users experience the “Screen Door effect” where users

are able to distinguish between the different pixels and lines in the display, which

can break immersion very quickly. [19] In addition to having the hardware do

more work to solve this problem, the prices of displays that are head mounted and

render at higher resolutions are extremely expensive and are not viable for the

consumer market.

Figure 1: Image of the screen door effect, unknown source linked from [20]

Most VR hardware aims for a refresh rate of 90fps. Most games on typical video

game consoles display at 30fps, however the optimum for typical viewing is

around 60fps. 90fps is much higher than what typical hardware is used to

exhibiting, especially twice at higher resolutions, but is a minimum requirement

11

in the VR medium. Human eyes are sensitive to frame rate changes [21], and an

inconsistent frame rate can cause cyber/motion sickness, as mentioned in Section

2.3.

Missing any of the mentioned above requirements: frame rate, resolution and 3D

effect, fundamentally breaks the experience, and as a result, most games have low

graphical fidelity.

12

3. Design

This section contains the details of the design for the technical demonstration.

Mainly, it’ll describe how the game will work and what will be contained, along

with requirements and details for the application itself.

3.1. Game Design

Full details of how the game will be designed can be found in the Game Design

document, in Appendix A.

The Game Design document is a descriptive document of the design of a video

game, which is continually updated and edited as development goes on [22]. It’s

used as a guide containing consolidated information of how a game is going to be

and is useful in ensuring the game doesn’t lose sight of its direction during

development. When using a Game Design document, the game is subject to

design changes as development goes on, as occasionally there are instances

where a chosen implementation of a feature works better on paper than

practically.

By trying to find out how different implementations of the solution work and

feel, all of them need to be implemented to begin with. As mentioned before,

there will be three main movement mechanics:

a) Teleportation movement. Pushing the main Face button on the Vive

controller will allow the player to teleport to a destination of their choice, up to a

certain distance away. Mainly used as the baseline to be compared against.

b) Kinetic movement. The movement of the character will be taken from the

physical movement of the player. Pushing the Face button and making a walking

motion with the controller will cause the player to move.

c) Vehicle-Based movement. Adding the context of a vehicle that the player is

in may reduce the motion sickness of smooth movement. Free movement by

simply touching on the Face button the direction the player wants to go.

These movement choices have been inspired by the background reading. The

game will require use of the movement methods to finish the game, and the user

will use all three movement types for the level, in separate playthroughs, before

providing feedback for analysis.

The game will consist of a single level that will be played by the user, where the

goal is to simply reach the end of the level, denoted by a flag. The level design

will be centred around encouraging the player to move around and use the

developed tools. In terms of structure, the level will be linear with a clear path to

take, and the player will have to move to reach the goal.

The nature of the game will be a ‘shooter’ game. The user will encounter red

enemies which they must shoot to defeat, and the enemies will be trying to shoot

them back. As Section 2.4 mentions, since solutions should be fined tuned for the

game, they will be built for combating these enemies.

13

For player health and lives, the player will die and restart the level when they

sustain a certain amount of hits from the enemies. Health can be recovered using

health packs found around the maps but must be reached and grabbed first.

These game design choices are made to encourage the users to use the movement

options given to them, in order to complete the game. By forcing a user to adapt

to a given controller scheme, they will be able to give real feedback on how the

movement felt in context of helping them reach the goals in game.

3.2. Requirements

Table 2 below describes the functional and non-functional requirements of the

proposed solutions. Above all, FR1-3 are compulsory requirements, which are

bare minimum to initiate user-based testing. With these requirements

implemented, I will be able to compare the different movement methods with the

aid of user data.

Mainly, the game must run smoothly and utilize the VR medium properly, or the

comparison won’t be useful. Noticeable lag, as mentioned in Section 2.3.1, will

cause more motion sickness than necessary which affects the results of the

solutions.

ID Requirement Description Priority

FR1 Run on the HTC Vive Compulsory

FR2 Make use of motion controllers Compulsory

FR3 Feature at least two movement methods Compulsory

FR4 Feature a third movement system Optional

FR5 Have a basic game featuring the movement

methods

Compulsory

NFR1 Run smoothly, with no noticeable lag Compulsory

NFR2 Run on other Virtual Reality hardware Optional

NFR3 Have multiple levels to test with Optional

Table 2: Requirements table

3.3. UML Diagram

14

Figure 2: This UML diagram represents the basic structure of the player related

classes.

The UML diagram, from Figure 2, is a simplified representation of the class

layout for the game. The full size can be found in Appendix B. In addition to this,

there is a separate UML diagram, Figure 3, describing the class layout for other

mechanics within the game. These are largely disjointed from the player

programmatically, yet still interact with them in game.

Figure 3: This UML diagram represents the other related classes needed inside

the game.

The base of the VR player controller is the parent class to the different solutions,

which makes implementing the individual solutions easier. The VR Base contains

all the necessary components and variables to have the player exist in the game

world, even if unable to do anything in the world. It contains both of the motion

controllers included with VR headsets and children components. The parent also

interfaces with SteamVR to work with the game engine, which is Unreal Engine

4 (UE4).

UE4 was chosen for reasons stated in Section 4.4. The main reason this chapter

of this document is sparse in comparison to others is due to the fact that UE4

handles a lot of the foundations and bases for my application. This means I do not

have to consider concepts such as MVC or modelling the application to fit

SteamVR, since UE4 does it already. It allows me to solely focus on the VR

movement methods I’m trying to create.

15

4. Implementation

This section will focus on the implementation of the demonstration. As

mentioned before, this project was created using Unreal Engine 4, using it’s

visual C++ Blueprint methods. The VR with the HTC Vive works in Unreal

Engine 4 through the SteamVR wrapper. The implementation contains many

features to make the game complete enough to be playable, but for the purpose of

conciseness, only significant and relevant features will be described below.

4.1. Movement Methods

The main work of this project was in the implementations of the movement

methods, which are detailed below.

4.1.1. Teleport Movement

My rendition of a Teleportation Movement system has the user use the Face

button on the Left Controller of the Vive. Pushing the button initiates

teleportation, where it must be held to decide where the player will move to.

Upon release, the player will be teleported. When the player holds the button

down, the Vive controller will project a virtual arc, which will end at the

destination where the user will be teleported. If the teleport location is invalid,

then no arc will be shown.

Figure 4: Image of teleportation arc used to show where the player will be

teleported

This is implemented with the use of predictive mechanics algorithms and a

Navigational Mesh, where a Navigational Mesh is a method for representing the

game world using polygons [23]. Usually, a Navigational Mesh is used in

Artificial Intelligence (AI) to determine where an AI can or cannot traverse,

however, in this case it’s used to let the game know where the player can and

16

cannot teleport. Using this, I was able to make the teleportation so that players

could not teleport to unintended places, through unintended means. These include

teleporting through a ceiling or up a wall.

Figure 5: Image of the Navigational Mesh, as the visible green layer over the

levels geometry

Using an arc to inform the player of their teleportation destination is a common

occurrence in VR games. In order to draw the arc, a projectile launch is simulated

from the tip of the controller, and the predicted path is drawn as the arc. To

change the distance the player can teleport, I changed the speed and/or physics of

the simulated projectile. This method of choosing the teleport destination allows

the player to traverse vertically as well as horizontally, fairly.

4.1.2. Kinetic Movement

Kinetic movement features forcing the user to create movement with their body

to induce movement in the virtual world. When the user pushed the Face button

of either controller, they initiate movement. While the Face button is held, the

user will move in the opposite direction of their arm movement. By swinging

their arms in a walking motion and rhythmically pushing the Face button to pull

at appropriate moments in their arms arc, the user can propel themselves forward.

This simply works by storing where the player has their hand when they push the

button and move their global location relative to the movement of their hands

movement. The hand positions exist relatively to the room-scale and headset

locations in Unreal Engine 4, so the positions had to be converted to world space

and reconverted to local space when calculating the distance to be moved.

Since the perception of motion where there is none seems to cause motion

sickness (as mentioned in Section 2.3), this method aims to remedy motion

sickness by using the motion induced by the hands as a placebo. In addition to

this, giving the player more control and precision over where they move and how

fast they move can remedy the sickness, while being a viable movement method

in the context of a game.

17

The kinetic movement method was a challenge to implement, as it required more

in-depth knowledge of the engine and its documentation to create. These

problems are mentioned more in Section 4.6.

4.1.3. Vehicle-Based Movement

The Vehicle-Based movement was the most difficult to implement. It attempts to

use the smooth motion movement mentioned before, without any of the negative

side effects. This has been done by placing the user in a “mechanical suit”/

“robot” or whatever object is required. By creating this static frame of reference,

the users brain is tricked into thinking nothing’s wrong when the body is being

moved. The outer object is carrying the user, therefore there’s nothing wrong

when movement is taking place.

Figure 6: The view from inside the vehicle, within VR

The concept and reasoning behind this implementation can be found largely in

Section 2.3, where I have attempted to create a solution using the research

gathered. As mentioned, a static frame of reference is created to help reduce

motion sickness, but in addition to this it works as an artificial means of reducing

field of view for the player. By encapsulating the player inside the vehicle and

limiting the players viewpoint via the window, the player has effectively a lower

FOV, more akin to 70º to 90º rather than the typical 110º.

The player must control the vehicles orientation using the controller. By holding

the trigger and orbiting the controller relative the players position, the vehicle

will also change direction, altering the view point.

4.2. Enemy Artificial Intelligence

For the technical demonstration to work, I needed to put the player in a position

where they were required to use the movement methods.

18

I implemented a basic humanoid enemy, where it can see the player, attempt to

fire at them, and chase the player if they lose sight of them. This was done using

behaviour trees in Unreal Engine 4. By having this AI proactively shoot the

player, the player would be encouraged to move to evade the advancing AI

enemy. This in turn naturally gets them to use the movement methods I’ve

implemented and allows the player to truly feel the movement method.

Evaluating different movement methods becomes easier when a player feels like

they are more or less capable of escaping from the same type of enemy.

Behaviour trees are an easy way to implement basic AI functionality, for a

purpose such as this. They were inherently built into Unreal Engine 4, making it

easy to utilize them. Behaviour Trees allow a hierarchical way of organising tasks

in a descending order, making the tree more scalable and usable[24]. I was easily

able to create the behaviour of idling and waiting to see the player, followed by

chasing and shooting the player successfully.

As mentioned in Section 4.1, Navigational Meshes were used to let the AI know

where it could traverse. By using the same Navigational Mesh as the one in

Section 4.1, I could ensure that the player and the AI could traverse the same

parts of the level, which meant that the player could not exploit or be exploited

by the AI and the Navigational Mesh.

Figure 7: Image of the AI the player faces in the technical demonstration.

4.3. Gun and Projectile

Both the player and the enemies use the same projectile to deal damage to each

other. The projectile is simply a default sphere from UE4 that is created at the tip

of the players gun and launched in the direction that the gun is facing. The gun is

implemented to be a child of the players class, where the player “possesses” a

gun that’s statically mounted to their arm. The player makes calls to gun object to

fire, making it a modular attachment for both the player and the enemies. The

orientation of the arm cannon is angled downwards, as seen in Figure 8, by

default. This is because the orientation of the controllers is at an angle, and to line

19

up the gun with the players arm, it needs to be offset relative to the controller

position.

The player has a variable hitbox, so that they can crouch down behind cover and

not be hit by enemy’s shots.

Figure 8: A picture of the arm cannon used in game.

4.4. Level Design

The level design is linear and designed to have the player move about. As

mentioned in Chapter 3, the level design would be focused around making the

users move about in order to flex the movement methods. The final level can be

seen below.

Figure 9: An overhead view of the final level created.

The user would be started on the left-hand side, indicated by the green square,

and would have to reach the goal indicated by the flag.

The main reasoning for this implementation is to expose the movement methods

to different scenarios and contexts. Verticality is included to test how the

movement methods feel when moving on the Y plane, since most games of the

future are unlikely to stay on same level the entire game. The end of the level is

20

more long distance, to see how the movement fares when moving for a long

period of time, while the beginning is more akin to a maze to see how the

movement feels when constantly changing direction.

4.5. Tools

4.5.1. Game Engine – Unreal Engine 4

The game was implemented in Unreal Engine 4 (UE4) by Epic Games. The

language of Unreal Engine 4 is C++, which excels in performance and speed.

UE4 is my preferred tool and the engine I am most proficient in.

It is a “complete suite of creation tools” for creating video games at an industry

standard [25]. Natively having support for the development of VR games and the

HTC Vive makes it an ideal choice for this project.

Another more common option for games development is Unity by Unity

Technologies. It uses C# instead of C++, which is substantially friendlier to work

with from a programming perspective. While considered easier to develop with, I

opted not to use it. This is because of my preference to UE4’s traditional Object-

Oriented design, where all of the game objects exist as classes, as opposed to

Unity’s “prefab” design, where game object exists as “prefabs” having scripts

attached to them. Using UE4 meant I wouldn’t have to learn a whole new

methodology of programming and would save time on development.

Regardless, UE4 utilizes classes as objects, where an object will have instance

variables, methods and properties associated with them.

Figure 10: Screenshot of Unreal Engine 4 interface

UE4 automatically sets up components such as scene and level structure,

allowing me to create levels with the building blocks they provide. Objects and

21

file structure can be easily handled, as seen in Figure 10. Objects created in UE4

can then be placed in these levels alongside the geometry. A hierarchy of all the

objects in the level can be seen on the right, for easy management.

Figure 11: Basic class design interface in UE4, current gun model shown

Noticeably from Figure 11, code can be drawn and visualised with the UE4

Blueprints scheme. Though the code is in C++, the visualisation makes it much

easier to understand and absorb.

4.5.2. Head Mounted Display – HTC Vive

The choice of head mounted display for this project is the HTC Vive. It’s the

optimum choice due to it having native support for room scale tracking reality

and motion controllers. In addition to this, it is supported by my engine of choice,

making it easy to develop with.

Other options included the Oculus Rift, Samsung Gear VR and Google

Daydream for Android. Gear VR and Daydream were sub-optimal for this

project, as they were designed for the Android platform and lacked any input or

room-scale movement. Oculus Rift would have been a usable tool for

development, but as I already own a Vive, there was no point in trying to obtain a

Rift when they are capable of the same feats functionally.

However, it can be assumed that because my implementation of a VR solution

only extends to PC use, my solutions may be invalid on Android platforms and

headsets which are less capable than the Vive.

4.6. Problems Encountered

During this project, there were problems as developing for VR proved a difficult

task, as I was using a medium that isn’t commonly developed for.

UE4 has sparse documentation compared to other engines such as Unity. Many

seemingly important functions were only briefly described when they needed

more clarification. An example of this would be the head mounted display “Get

22

Orientation and Position” [26], which returns a position and rotation in the form

of a Vector and a Rotator, however it is not noted where these returned values are

relative to. I ended up using trial and error to discover that the position returned is

local relative to the centre of the room on the floor, and is local to the object

itself, rather than to the world.

Much of the documentation was like this, with the requirement of carrying out

small tests to discover what the functions did, which made development much

slower than it needed to be.

During the creation of the Vehicle-Based movement method (Section 4.1.3), I

encountered problems with creating a solution. Firstly, having to create a frame

of reference in the form of a mechanized suit that the player was in was difficult.

No models pre-existed for me to use, so I had to create one myself using a 3D

modelling program, which isn’t ideal. After simulating the concept of the player

existing inside the vehicle, I had difficulty orienting the vehicle properly in

gameplay. Initially, I planned to have the vehicle automatically orient on the

players movement, but because most VR head mounted displays only have three

tracking points available this was not viable. As a result, the controls for the

vehicle are manual.

23

5. Testing

Tests were designed to ensure that the demonstration was working properly. This

was mainly to prepare it for the user evaluation. Testing in games development is

difficult, as bugs are much harder to locate, despite being easy to reproduce.

5.1. White Box Testing

White Box testing is testing an application and developing knowing of the

internal structures, as opposed to Black Box which works on functionality.

By nature of the application, unit tests are not applicable to gaming applications.

Unit tests usually imply that a given input to a program or application will intend

to return a certain value.

The methodology to white box testing included extensive Iterative Testing as

development progressed, mentioned in Section 7.2. This is described as a

development style where once a feature is implemented, it is tested and then

improved, simply on practice [27]. Using this methodology, I was able to

improve my solutions by testing them myself. This can be seen, for example,

where initially I created a smooth movement type from Section 2.4.1 and then

extended it to work for the Vehicle-based movement type by adding the

“robot/shell”. I ensured the movement method was first customizable and usable

by itself, in programmatic terms, before augmenting it.

Debugging was constantly used in development to give more in-depth feedback

about what was going on in the program. Since a lot of the control flow in a game

powered by Unreal Engine is obscured, print lines were used frequently for cases

such as determining what classes were executing what code at what time. Games

programming uses vector mathematics heavily for recording the positions,

rotations and scales of objects, especially with VR. Being able to see what values

the HTC Vive’s controllers were feeding back the software was significantly

useful in debugging.

Tools such as line traces were extremely useful in debugging functionality. In

UE4, line traces can be inserted and used anywhere, similarly to a console log in

a typical programming language. They are drawn visually in game.

As seen in Figure 12, these line traces were useful for marking positions and

movements in VR space.

24

Figure 12: A green debug line in game, being drawn from the Kinetic Movement

method, illustrating the controllers previous position when the button is pushed to

where the controller currently is.

5.2. Black Box Testing

Black box unit testing is the concept of testing an application from the outside.

The tester isn’t aware of the inner workings of the application, only their input

and output. This is the type of testing most applicable to video games, as they are

heavily interactive compared to normal software. Validation on the testing is

mainly done on the functional requirements of the application [28].

Test

Number

Summary Steps Expected

Result

Actual Result

1 Can the player

move with the

teleportation

method

Use the teleport

function by

holding the face

button, pointing to

destination and

releasing

Player

teleports to

the intended

destination

Player

teleports to

the intended

destination

2 Can the player

teleport to

unintended

locations

Use the teleport

function to try

teleport into walls

and ceilings

Player cannot

teleport into

these places

Player cannot

teleport into

these places

3 Can the player

use the kinetic

movement

Hold Face button

down and move

hand, the player

should be moving

themselves relative

to the hand

movement

Player moves

correctly and

with the

movement of

the hand

Player moves

correctly and

with the

movement of

the hand

4 Can the player

move using the

Use thumb on the

Face button, the

Player moves

smoothly

Player moves

smoothly

25

Vehicle-based

movement

player should

move in the

direction relative

to position of the

thumb from the

centre of the face

5 Using kinetic

and Vehicle-

based

movement, can

the player

traverse up

slopes and

stairs

Same as case 4,

but using the

movement on

slopes and stairs

Player can

move up

slopes and

stairs

Player can

move up

slopes and

stairs

6 Do all

movement

methods work

on the HTC

Vive

Run the game

using the HTC

Vive, within editor

in Unreal 4.

The game

opens and

function as

stated in tests

1-5.

The game

should open

and function

as stated in

tests 1-5.

7 Enemy will

chase and shoot

player once

they enter a

certain radius

Player should

move towards

enemy, in front of

enemy’s view

Enemy

should turn

to shoot at

the player

and move

towards them

Enemy does

turn to shoot

at the player

and move

towards them

8 Game achieves

an appropriate

average

framerate

Run game in editor

with Vive attached

and measure the

framerate over a

minute

Average

framerate

should be

around 90fps

Average

framerate is

around 115fps

Table 3: Black Box functional tests table

These tests can be used to confirm that the functional requirements defined in

Section 3.2. Test numbers 1-5 confirm that FR3 and FR4 are implemented fully

and Test 6 conforms with FR1 and FR2.

Test 8 is a benchmark that conforms with NFR1, seen in Figure 13, and in large

in Appendix E. Using Unreal Engine’s “stat gpu” command, the average and

maximum amount of time a frame is rendered in can be viewed, along with the

different components of the game that are causing the load times. As shown in

the image below, the average time for a frame to be rendered is 8.64ms, which

averages 115fps. This means the technical demonstration is far above the

required average framerate for VR games.

26

Figure 13: The test GUI showing the time in milliseconds for a frame to be

rendered.

27

6. User Evaluation

User testing was the best way to evaluate whether the solutions I created were

valid, as ultimately a solution is only valid if approved by users. By conducting

an experiment where users use the solutions I have created, I can evaluate

whether they’re effective, using the user feedback.

6.1. User Evaluation Methodology

For the user testing, I had 10 people play my demonstration, with all different

movement types. The ERGO submission number was 40298.

After briefing the participants on what they would be doing in the study, the

participants would play the level three times over with the movement types. The

movement methods would be played in a random order, as it can be assumed that

playing the same level multiple times would have participants get better at the

game as they learn how it works. This has the possibility of skewing data, where

it may seem like one movement method is vastly outperforming the others.

Each time they played through the level, I made notes and recorded any

significant quotes about the movement methods or testing experience, along with

timing of how long it took them to complete a level with a certain movement

method.

Afterwards, users would fill out a questionnaire with the following questions:

• Rank the movement methods from 1 – 3, where 1 is the type you liked the

most, and 3 is the one you liked the least

• Why did you rank the movement methods as you did?

• Were any of the movement methods difficult to use, in context of playing the

game? If so, why?

• Rank the movement methods from 1 – 3, where 1 is the type that felt the most

comfortable using, and 3 the least comfortable using

• Why did you rank the movements as you did?

• What changes would you make to any of the movements to suit them better to

yourself?

• Final comments, anything you'd like to say about the experience?

This allowed me to collect a significant amount of data from each user, including

qualitative and quantitative data. Mainly, it was important that data on what users

wanted out of the movement methods was collected, and whether the solutions

created satisfied those wants.

Using this data, I can assimilate the best-favoured movement method in terms of

ease of use and comfort for motion sickness. The qualitative data can be used to

home in on specific problems faced in the VR environment and perhaps narrow

down a generic solution.

28

6.2. Results

These are the results of the user evaluation. I have compiled graphs out of the

way the participants ranked the different movement methods and included

different quotes from participants. The full comprehensive list of results from the

survey given to the participants can be found in Appendix D.

Figure 14: Graph showing results of participants favourite movement methods,

ranked

Firstly, the most interesting thing about the rankings in Figure 14 is that no one

ranked Teleportation as the one they enjoyed the least, and only one participant

ranked Vehicle-based movement as their favourite. The kinetic based movement

seemed to be in the middle of the two, with roughly equal rankings by all

participants.

When the users were asked why they ranked the movement methods as they did,

participants gave a variety of answers. Participant 1 said “The vehicle was very

frustrating. It blocked my field of vision and if I moved in the real world, the

vehicle would block my vision in the virtual world.” 5 and 9 also claimed that the

vehicle was actually very frustrating to use from a gameplay point of view.

It was generally agreed that teleportation was the easiest and fastest to use.

“Speed and ease of use of teleporting was very good to use” was claimed by

Participant 7.

29

Figure 15: Graph showing what methods were ranked as most comfortable, in

terms of motion sickness

Figure 15 shows that none of the users found the vehicle-based movement better

than the other two solutions. However, Participants after trying the Smooth

movement without the vehicle said they realised that the vehicle was, in fact,

useful. Participant 10 said “Smooth movement screen drag wasn't immersive,

without vehicle made me feel wobbly” after trying out smooth movement without

the vehicle.

Otherwise, it’s mostly agreed that the teleportation movement is the most

comfortable to use, with the least motion sickness. It isn’t without it’s problems,

since Participant 1 “felt like I did not have full control or autonomy over my

movements”. Others said that teleporting required them to reorient themselves

with the game world afterwards.

When asked how they would personally improve or change any of the movement

methods, most of the replies were disjointed with no correlation. The one agreed

opinion was from 3, 7, 8 and 9 wanting the Kinetic movement to work faster,

with a higher ratio of arm movement to game movement. Participant 2 would

have liked for smooth movement to be merged with teleportation and a few of the

participants would have liked the Vehicle part of Vehicle-based Movement

removed.

Regarding the timings of the participants, it seemed that in all situations the

participants would improve level completion time every time they tried a new

movement method, making the data not very useful.

6.3. Analysis and Evaluation

Based on the results from above, there are some clear correlations and

conclusions that can be drawn.

Teleportation was the most favoured technique, because of it’s ease of use and

lack of motion sickness associated with it, for the most part. Some participants

said that it would take time to get used to, since there is less precision of

30

movement compared to the other two methods. Others had the opinion that while

it was much easier to use than the other methods, it was largely inappropriate for

the game they were given. They could not imagine playing a large game using it,

for a long period of time, especially a multiplayer one. In addition to this, many

participants disliked the fact that they’d have to reorient themselves after

teleporting.

The vehicle-based testing was less favoured as the vehicle was inhibiting rather

than useful. However, when tested against typical smooth movement as described

in Section 2.4.1, it’s reception was much better at reducing motion sickness.

Participants described it as annoying and tedious, since control of the vehicles

orientation had to be taken into account while trying to move around and

complete the level. Arguably, as the weakest movement method, my

implementation of the vehicle may be the reason for all of this.

Kinetic based movement generally received complaints that, while no sickness

was occurring from it, the movement was tedious to perform continuously.

Participants felt that the movement was, while precise, much slower than the

other two movement methods for the effort required to make the movement

happen. Otherwise, there seems to be no indication that the kinetic movement

caused significant motion sickness.

The results mainly prove why the teleportation method has been the defacto

default movement method in VR gaming. In context of suitability for a game,

even participants understood it wasn’t built for a shooter like game but enjoyed

using it because it was easy to use. However, the other two methods still showed

promise to some degree.

For the kinetic movement, it seemed that having a higher sensitivity and

movement speed was more favourable. Since the only complaint about it was that

it was tedious to use, perhaps simply reducing the amount of effort to move with

it would make it a suitable movement method to replace teleportation. More user

evaluation would be required to see whether an increase in sensitivity would

reintroduce motion sickness to the movement method, however.

The vehicle-based movement can work if the implementation is improved. Since

it did seem to improve the motion sickness of the participants compared to

regular smooth motion, perhaps the improvement of the vehicle control would

make it more useable. This would be made easier if the vehicle automatically

oriented itself around the user, rather than the user doing it manually. This would

require more precision from the hardware, since the Vive only tracks the head,

left hand and the right hand. If there were trackers on the shoulders or waist, then

orientation of the body could be tracked independently of the head.

Overall, it can be concluded that while the other two proposed movement

methods could not dethrone teleportation in this study, they may be able to do so

with some iteration. Conversely, it’s possible the “best” movement method may

be unattainable largely since susceptibility to motion sickness and how people

prefer their gameplay is a case by case problem.

31

7. Project Management

This section will cover how the project was managed in terms of planning and

risk analysis, along with programming methodology. It will also evaluate how the

project ended up executing in comparison to the original plan.

7.1. Project Gantt Chart

The project roadmap is outlined in a Gantt Chart within Figure 16 and Appendix

C. It shows my plan of development through the project, including contingencies.

It shows the completion times and lengths of each task as they happened.

The Gantt chart was to serve merely as a guideline for overall progress, as

Iterative Programming was used in software development during its main sprints.

It was useful for ensuring the project stayed roughly on track and provided a

timeline for major developmental milestones.

Figure 16: Original Gantt Chart

Unfortunately, this Gantt chart did not pan out as it was meant to as the project

went on towards the end. Changes, that reflect how the schedule ended up

executed, to the Gantt chart are shown in Figure 17.

One cause of change was the difficulty encountered with creating the vehicle-

based movement method, which ended up taking much more time to create than

anticipated.

The biggest change to derail the project was the time it ended up taking to have

my user evaluation validated by ERGO. Despite submitting for ethical approval

on time, with expected wait times of up to two weeks, ERGO took over 2 months

to complete my request. Furthermore, I had to resubmit my case amended to their

standards afterwards, since the original submission was not approved. This

caused my user evaluation phase to be shortened, where instead of taking place

from mid-March to the end of April, the evaluation was only approved to happen

from mid-end of April.

In retrospective, the ethical approval should have started earlier, and it was

advised that I started it during Semester 1 rather than Semester 2. Since the

32

approval task requires me to wait for someone else and usually happens multiple

times, this outcome should have been considered. Additionally, the three

movement methods would have been better developed if created at the beginning

of the project rather the end, since it would have been easier to tune them over a

longer period of time.

Figure 17: Real Gantt Chart

7.2. Iterative Programming

Iterative Programming was used as the development cycle in this project. It took

place during the phases of developing the core game and its mechanics, along

with the movement systems themselves. It allowed me to break down the

development of a large application like this into smaller chunks, where I could

implement one feature at a time and test the functionality of it regularly [29].

The use of Iterative Programming can be seen in the original Gantt chart, where

different tasks will be implemented one after another. However, the nature of

game development is that many of the mechanics and features are dependent on

each other for testing and implementation. I could not implement the shooting

feature of a gun if I do not have a character developed to shoot the gun. This

meant that some tasks were worked concurrently for the project to be developed

evenly.

This can be seen, for example, in my Gantt chart where creation of levels began

before the completion of the base game. This was because the base game could

not be tested without levels.

Overall, through the project, development itself went smoothly. Aside from the

vehicle-based movement, all features developed went as according to the Gantt

chart and plans.

33

7.3. Risk Analysis

Although risks cannot be entirely avoided, they can be managed and minimized.

Identifying potential risks is paramount for ensuring the project runs as smoothly

as possible. [30]

Type Description Probability

(High, Medium,

Low)

Impact (H,

M, L)

Avoidance

Strategy

Human

Risk

Illness M M –

Performance

reduced when

ill

Contingency time

has been allocated

for tasks

Technical

Risk

Work lost L – Hardware

breaks, or

accidentally

break project

during

development

H – Tasks will

have to be

redone if not

backed up

properly

Work shall be

backed up on

GitHub and

DropBox, along

with both being on

laptop and desktop

Technical

Risk

Hardware

breaks

L – Computer or

HTC Vive could

break.

H –

Development

will cease if I

don’t have the

hardware to

develop with

I have a backup for

computer

components, and

the University will

let me borrow a

Vive if needed

Project

Risk

Schedule

unlikely to

be followed

entirely

H – It’s unlikely

that the schedule

can be followed

100%

M – In

extreme

conditions, the

schedule can

be entirely

derailed,

making the

planning

useless

Adjust the schedule

and tasks during

the project to

ensure that they all

have reasonable

times for

completion

Project

Risk

Tasks

taking too

long

M – Some tasks

may take longer

than planned, and

overrun the

schedule roughly

H – Derailing

the plan may

cause other

tasks to be

rushed to

completion

Contingency time

has been allocated

for tasks

Project

Risk

ERGO

study not

being

approved

H- It is common

for ERGO studies

to take up to 2

weeks to submit

with multiple

submissions

before approval

M – If it takes

too long to

submit

The submission

will have to be

submitted early.

Over a months’

notice given, as

seen in the original

Gantt chart.

Table 4: Risk Analysis Table

For each risk, I had created an avoidance strategy to solve its potential problem,

should they occur.

Most of my solutions involved the use of contingency time to consider that

accomplishing tasks may take longer than thought. Using Git and GitHub, I could

34

keep track of previous versions and ensure I had a backup of the project if

anything went wrong during development.

In reality, only one risk ended up occurring during the project which was the

ERGO study approval, from above. Unfortunately, this occurrence was an edge

case where the approval took over two months to complete, and mitigation was

difficult. Luckily, I had enough time to execute user evaluation due to

contingency times, but in the future this event will be noted for risk analysis.

35

8. Conclusion and Future Work

This third-year project turned out to be more difficult to implement than expected

and creating the implementations and running user evaluation was challenging.

For future projects, the problems mentioned in Chapter 7 will be taken into

consideration when planning, as contingencies were not thought of enough.

I set out to find a solution to the movement problem in the Virtual Reality

climate, which involved dethroning teleportation movement as the default

movement technique in games. Though I did not find a conclusive solution, I

believe the research conducted will be useful in creating a solution in the future.

As mentioned in the user evaluation, the solutions were satisfactory in solving

VRs most paramount problem, motion sickness. Most users experienced minimal

motion sickness with the newly implemented methods compared to conventional

methods such as smooth motion. However, these new methods weren’t polished

enough to be useable fully within a game.

For future work within the scope of this project, iterating over the current

solutions and repeating user evaluation with a larger sample size could eventually

yield a conclusive solution. Though it would only be a solution for the given type

of game it’s tested for, this game type is highly mobile and hopefully applies to

other games.

It is hoped that the research that has taken place, in the creation of this report, is

useful in the future of Virtual Reality and its usage in the games industry in the

future. Perhaps these methods can be extended to application usage rather than

just games too. Mainly, the reduction in motion sickness discovered in my

solutions could help the VR development industry in general.

36

References

[1] S. Steinberg, “VIDEOGAME MARKETING AND PR Vol. 1: Playing to

Win,” 2007.

[2] T. Fullerton, Games Design Workshop. 2008.

[3] J. Schell, The Art of Game Design. 2008.

[4] R. Pausch, R. Gold, T. Skelly, D. Thiel, and T. Hall, “What HCI Designers

Can Learn From Video Game Designers,” 1994.

[5] J. Steuer, “Defining Virtual Reality: Dimensions Determining

Telepresence,” J. Commun., vol. 42, no. 4, pp. 73–93, 1992.

[6] Google, “Get Cardboard – Google VR.” [Online]. Available:

https://vr.google.com/cardboard/get-cardboard/. [Accessed: 21-Apr-2018].

[7] “Oculus Rift | Oculus.” [Online]. Available:

https://www.oculus.com/rift/#oui-csl-rift-games=robo-recall. [Accessed:

21-Apr-2018].

[8] “VIVETM United Kingdom | Buy VIVE Hardware.” [Online]. Available:

https://www.vive.com/uk/product/. [Accessed: 21-Apr-2018].

[9] Valve, “GitHub - OpenVR,” GitHub, 2018. [Online]. Available:

https://github.com/ValveSoftware/openvr.

[10] J. J. LaViola Jr, “A discussion of cybersickness in virtual environments,”

ACM SIGCHI Bull., vol. 32, no. 1, pp. 47–56, 2000.

[11] A. Rolnick and R. E. Lubow, “Why is the driver rarely motion sick? The

role of controllability in motion sickness,” Ergonomics, vol. 34, no. 7, pp.

867–879, 1991.

[12] J.-W. Lin, H. B.-L. Duh, D. E. Parker, H. Abi-Rached, and T. A. Furness,

“Effects of field of view on presence, enjoyment, memory, and simulator

sickness in a virtual environment,” in Virtual Reality, 2002. Proceedings.

IEEE, 2002, pp. 164–171.

[13] J. M. Oscillada, “Comparison Chart of FOV (Field of View) of VR

Headsets – Virtual Reality Times,” 2017. [Online]. Available:

http://virtualrealitytimes.com/2017/03/06/chart-fov-field-of-view-vr-

headsets/. [Accessed: 18-Apr-2018].

[14] J. D. Prothero, M. H. Draper, T. A. Furness 3rd, D. E. Parker, and M. J.

Wells, “The use of an independent visual background to reduce simulator

side-effects.,” Aviat. Space. Environ. Med., vol. 70, no. 3 Pt 1, pp. 277–

283, 1999.

[15] “Teleportation Sucks...and we can do better. — VRemedy Labs.” [Online].

Available: https://vremedylabs.com/blog/2017/7/30/teleportation-

sucksand-we-can-do-better. [Accessed: 12-Dec-2017].

[16] “Loco-motion: The ridiculous state of VR movement — VRemedy Labs.”

[Online]. Available: https://vremedylabs.com/blog/2017/7/31/loco-motion-

37

the-ridiculous-state-of-vr-movement. [Accessed: 12-Dec-2017].

[17] K. Voll, “GDC Vault - This is Your Brain on VR: A Look at The

Psychology of Doing VR Right,” 2016. [Online]. Available:

https://www.gdcvault.com/play/1023643/This-is-Your-Brain-on.

[Accessed: 12-Dec-2017].

[18] C. Edwards, “Valve Lines Up Console Partners in Challenge to Microsoft,

Sony - Bloomberg,” 4/11/2013. [Online]. Available:

https://www.bloomberg.com/news/articles/2013-11-04/valve-lines-up-

console-partners-in-challenge-to-microsoft-sony. [Accessed: 03-Dec-

2017].

[19] J. W. Murray, Building Virtual Reality with Unity and Steam Vr. CRC

Press, 2017.

[20] Unknown, “PSVR Rids VR of Screen Door Effect (SDE) : PS4,” 2016.

[Online]. Available:

https://www.reddit.com/r/PS4/comments/51vk72/link_psvr_rids_vr_of_scr

een_door_effect_sde/. [Accessed: 30-Apr-2018].

[21] H. Song, J. Kim, and C.-C. J. Kuo, “Real-time encoding frame rate control

for H. 263+ video over the Internet,” Signal Process. Image Commun., vol.

15, no. 1–2, pp. 127–148, 1999.

[22] K. Oxland, Gameplay and design. Pearson Education, 2004.

[23] X. Cui and H. Shi, “An overview of pathfinding in navigation mesh,” Int.

J. Comput. Sci. Netw. Secur., vol. 12, no. 12, pp. 48–51, 2012.

[24] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving behaviour

trees for the mario ai competition using grammatical evolution,” in

European Conference on the Applications of Evolutionary Computation,

2011, pp. 123–132.

[25] “Unreal Engine | Game Engine Technology by Unreal.” [Online].

Available: https://www.unrealengine.com/en-US/what-is-unreal-engine-4.

[Accessed: 11-Dec-2017].

[26] Epic Games, “Get Orientation and Position | Unreal Engine,” 2018.

[Online]. Available:

http://api.unrealengine.com/INT/BlueprintAPI/Input/HeadMountedDisplay

/GetOrientationandPosition/index.html. [Accessed: 17-Apr-2018].

[27] J. Rubin and D. Chisnell, Handbook of usability testing: howto plan,

design, and conduct effective tests. John Wiley & Sons, 2008.

[28] S. Nidhra and J. Dondeti, “Black box and white box testing techniques-a

literature review,” Int. J. Embed. Syst. Appl., vol. 2, no. 2, pp. 29–50, 2012.

[29] Y. Francino, “What is iterative development?” [Online]. Available:

http://searchsoftwarequality.techtarget.com/definition/iterative-

development. [Accessed: 09-Dec-2017].

[30] R. N. Charette, Software engineering risk analysis and management.

Intertext Publications New York, 1989.

38

Appendix A – Game Design Document

Basic Description

This game is meant to be a basic shooter game at its core.

You are a character, you can move about a map, and you have enemies to shoot.

You can die if you get shot too many times. You are in first person, since you are

in VR.

Enemy characters will be basic characters, coloured in red. In contrast to the rest

of the game, they should be easy to spot. They can shoot at you.

The goal of the game will simply to reach the end of a level, represented by a

goal flag/area.

Movement Mechanics

There will be three main movement mechanics:

a) Teleportation movement. This is movement typically used in virtual reality

games. Pushing the main face pad on the Vive controller will allow the player to

teleport to a destination of their choice, up to a certain distance away.

b) Kinetic movement. This is a movement technique employed by VR games

such as GORN. The movement of the character will be taken from the physical

movement of the player. Pushing the face button and making a walking motion

with the controller will cause the player to move.

c) Vehicle-based movement. The smooth movement is rarely used in VR

because its ability to make players motion sick. However, adding the context of a

vehicle that the player is in may reduce the motion sickness of smooth

movement. Free movement by simply touching on the Vive Face button the

direction the player wants to go.

Player Properties

The player will move at an appropriate rate depending on the controller type.

This is because forcing the player to slide in at a certain speed with the kinetic

movement, for example, may induce motion sickness.

Jumping is still in consideration.

Player will have non-regenerating health and will have to pick up health packs on

the ground to replenish it. The players maximum health will be 200, where health

packs will replenish 80 health. These numbers have currently been chosen

arbitrarily but will be adjusted properly during testing.

The player’s UI / HUD is still in consideration, will have to be tested at

implementation. Currently, it’s planned to be a health bar at the top left of the

players view, which will move with the player, with a simply number floating on

top of the gun model, showing the amount of ammo left in the magazine.

Gun mechanics

39

Player will have an arm cannon for a gun, as it’s the easiest to implement to a

reasonable standard, because of its flexibility of implied functionality. It’s a one-

handed weapon that’s easy to implement in VR and leaves the hand -primarily

used for movement available.

Guns will be projectile based instead of hit-scan based, this is so it will be easier

for the player to see where their projectiles are going and dodge enemy

projectiles with their movement. Gun damage will be 20, making them able to

kill enemies in a reasonable amount of hits.

The player will have infinite ammo, for convenience. Gun model:

Level Design

The game will use level design that requires the player to move frequently around

the map. It will be of linear design. Unlike most VR games, the player will be

compelled to move forward and utilize their surroundings.

The player will be confronted with enemies and be required to defeat all the

enemies before proceeding forward in some cases. There will be many objects to

hide behind to avoid being hit. There will also be powerups placed around for the

players to get, which will encourage the use of the movement mechanisms given

to them. Here is a sample level blueprint for the first level of the game:

The level will include aspects of verticality, maze like design and long distances.

These are to see how usable the movement methods are under most various

circumstances.

40

Enemy Design

Enemies will be typical humanoids, coloured in red, as said before.

Currently planned, there will be a basic humanoid that can fire the same

projectiles as the player, but at a slightly slower speed, so that the player can react

to it. Humanoid enemies will have 60 health, making them killable with three

shots. However, being hit in the head will induce an instant kill.

There will also be a flying “drone” type enemy that will shoot at the player. This

will encourage the player to observe their surroundings more and increases the

variety of enemies. Drones will have 40 health, making them killable in two

shots.

Enemy shots will inflict 20 damages per shot, making them able to kill the player

in 10 shots.

41

Appendix B – UML Diagrams in large

42

43

Appendix C – Gantt Charts in large

44

45

Appendix D – User Evaluation Full Results

46

47

48

49

Appendix E – Black Box Test 8 Figure in Large

50

Appendix F – Original Project Brief

Technical demonstration exploring movement methods in

Virtual Reality games - COMP3200 – Project Brief

Student Name: Imran Bepari Supervisor Name: David

Millard

Problem

With the recent release of Virtual Reality head mounted displays on a consumer

level, the gaming industry has still yet to properly grasp how a Virtual Reality

(VR) game should be made on the scale of a Triple A title. Movement is a

difficult subject in VR because of its boundaries. A user would be restricted to

the room they are in, so walking around a large level or world the game to create

a new movement system to make the game playable.

Many games will simply fit into the users play space and not move them around,

or use a mechanic such as teleporting to move the player. While these work for

some game genres, such as games as short indie games, a solution has not been

found for large scale games with huge world, such as RPGs and shooters.

For larger games, a teleport mechanic is an unsatisfactory solution, and would not

work for the intended user experience. Multiplayer shooter combat is broken if

the player can teleport around, players need to be able to be seen to be able to be

shot, for example. Teleporting can also thematically be unfit for a game, for

example, if a game has a medieval theme, why can players move like that?

Overall, a new solution is required.

Goals

Explore the different movement methods available in Virtual Reality, and

discover how they affect the user experience in the game. These methods should

be convenient for the user and not cause any motion sickness, while widening the

scope of what VR games are capable of.

I will create three separate movement techniques in Unreal Engine 4, and try to

compare them. The main goal of these demonstrations is to have large worlds and

levels in mind with the movement design. These would all be incorporated into

the same game. They can then be compared to see what kind of user experience

they would create, and what kind of games could be created with them. The

movement techniques would include:

1) the teleportation method, implemented in it’s best form for user

experience.

2) the user mimicking a walking motion in some way to create movement in

the Virtual world.

51

3) adding the user to a vehicle of some variety to give “context” to their

location.

Scope

The scope of my project would involve a game tech demo that would have the

three different movement techniques available.

This game would not be large in the sense of having a deep structure and length,

but have a couple of large levels that require the player to move around a lot, in

order to make full use of the systems being developed.

No assets or art will be created, mainly placeholders and royalty free ones so

focus is on the games system.

